
Jiku Live: A Live Zoomable Video Streaming System

Arash Shafiei, Ngo Quang Minh Khiem, Guntur Ravindra
Mukesh Saini, Cong Pang, Wei Tsang Ooi

Department of Computer Science
National University of Singapore

ABSTRACT
We present Jiku Live, a client-server system that supports zoom and
pan operations in live video streaming from network cameras. The
client is an Android mobile application that plays back live video
from a selected camera and supports multi-touch zoom and pan in-
teraction. The server acquires video streams from network cameras
and transcodes the video feeds into one-second video segments at
multiple resolutions. The transcoded video supports random access
into any region-of-interest (RoI) within the video. Upon receiving
zoom or pan requests, the server transmits the RoIs from the corre-
sponding video segments to the client.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

General Terms
Design, Performance

Keywords
Zoomable Video, Live Video Streaming

1. INTRODUCTION
Many network cameras are capable of capturing and streaming

high-definition videos for live viewing on remote clients. Such
systems are useful in many contexts, such as video surveillance,
e-learning, and event telecast. In these applications, it is common
for a viewer to zoom into and pan around a video in order to view
a region-of-interest (RoI) within the video in higher detail. Such
zoomable video has been proposed in the literature [4, 3, 2]. To
support zoomable video, video frames can be split into a grid of
non-overlapping [3, 4] or overlapping [2] tiles. Tiles that overlap
with the given RoI are sent to the client for decoding.

Existing work for zoomable video streaming is designed for pre-
recorded video. In this paper, we present Jiku Live, a system that
supports live zoomable video streaming from off-the-shelf network
cameras. Jiku Live is a client-server system, where the server (called
Jiku Video Server) is responsible for converting video streams from
network cameras into tiles before streaming the RoI to the clients.
The client (called Jiku Live Player) is a typical streaming video
client with added support for zoom and pan operations. It commu-
nicates with and receives video streams from the Jiku Video Server.

Copyright is held by the author/owner(s).
MM’12, October 29–November 2, 2012, Nara, Japan.
ACM 978-1-4503-1089-5/12/10.

Network 
Cameras

:
:

Transcoder

Segment
Manager

TransmitterBuffer

Transcoder

Segment
Manager

TransmitterBuffer

User Request 
Handler WiFi APNetwork 

Switch

Jiku Video Server

Jiku Live Player

:
:

:
:

Figure 1: Jiku Architecture

Jiku Live Player also allows the user to switch between the avail-
able network cameras (See Figure 2).

To enable zoom and pan in live video, we use virtual tiling pro-
posed by Feng et al. [1]. In this method, video frames are encoded
with motion vectors limited to a tile. The encoded macroblocks are
organized as slices, one per macroblock. Jiku Video Server parses
an encoded stream to generate an index that has references to the
tile offsets. Cropping of an RoI is translated to a random access
operation, where tiles intersecting with the RoI are picked from
the stream and composed as packets. As a result, each client can
crop into a different RoI simultaneously. Zooming in and out is im-
plemented with bitstream switching. The input video stream from
one network camera is encoded at multiple frame dimensions. The
index to tiles is maintained separately for each frame dimension
and cropping is performed using the index structure for a specified
zoom level.

2. ARCHITECTURE
We now elaborate on the architecture of the Jiku Video Server

and describe the Jiku Live Player.

2.1 Jiku Video Server
Jiku Video Server has three main sub-systems: a transcoder, a

segment manager, and a transmitter. These sub-systems are inter-
linked by a pipeline architecture, with a shared memory buffer serv-
ing as a common area to which encoded videos are written to and
read from during streaming. The overview of Jiku Video Server is
presented in Figure 1.

Transcoder: The transcoder runs as a multi-threaded process
on the video server. It receives video streams from the network
cameras, converts each video stream into video segments, each of

1265



(a) (b) (c)

Figure 2: User interactions include (a) zooming, (b) panning, and (c) switching camera

one second duration, and encodes each segment into multiple frame
resolutions with virtual tiling. Each tile is a 32⇥32 pixels region
that is encoded in a way that limits the motion vectors to within
the same tile. The encoded segments are then parsed to identify
the byte offsets of each tile boundary. These offsets are sent to the
transmitter over a control channel. The video segments are stored
on a video buffer that can also be accessed by the transmitter. Once
a segment of video has been encoded, the transcoder sends a signal
to the segment manager.

Segment Manager: On receiving a signal from the transcoder,
the segment manager loads the index into an in-memory trie. The
trie stores the frame numbers within the segment, and for each
frame the list of tiles. Then for each tile, it stores a list of slices
(and their byte offsets) in that tile. The root of the trie is held in a
circular queue, which contains the trie of different video segments
from the same network camera. There is one such queue per zoom
level (frame dimension).

Transmitter: The transmitter streams video segments to the users
over UDP. Users can specify the RoI they want to view from any
camera feed at a chosen zoom level. These user inputs are provided
to the transmitter. The transmitter accesses the corresponding trie
in the segment manager, and looks up the byte offsets of the slices
in the tiles corresponding to each user’s RoI. The slices at these
byte offset positions are then read, packetized, and transmitted.

2.2 Jiku Live Player
The Jiku Live Player is an Android mobile application imple-

mented using ffmpeg libraries. We added an interface for zoom
and pan based on multi-touch gestures. Users can zoom in/out by
using two-finger pinch/unpinch, and pan by dragging on the screen.
The player manages the display buffer, and translates the decoded
RoI to the correct coordinate space for proper display. The player
also allows users to cycle through the network cameras present in
the system.

3. SYSTEM PERFORMANCE
We tested the Jiku system with two AXIS network cameras and

three Samsung Galaxy SII Android phones connected via a 802.11n
wireless network. The cameras, the wireless access point, and the
Jiku server are networked via a Cisco switch. Ten virtual connec-
tions to the server were also used to load the streaming system.
The virtual connections change the RoIs to random locations ev-
ery five seconds. Jiku server runs on a 2.66 GHz Xeon Quad-Core
machine with 8 GB RAM. The video received from each camera
was encoded into three resolutions namely 384⇥288, 640⇥480,
and 1280⇥960. The end-to-end delay of the system is three sec-
onds out of which about one second is the delay in fetching data
from camera, one second is the delay we introduce for buffering of
the video segments, and one second is other processing overheads.
The interaction delay is three seconds as well. Under our current
compression settings (ffmpeg implementation of MPEG-4, I- and
P-frames only, VBR with quantization scale of 4) with a typical
scene in a lab, the bitrate between cameras and server at the res-

olution of 1280⇥960 ranges from about 450kbps to 4 Mbps. The
RoI bitrate of the stream received by client ranges from 128 kbps to
about 800 kbps, depending on the amount of motion in the scene.

4. THE DEMONSTRATION
During the demonstration, we will show the Jiku Video Server

and Jiku Live Player. The server will receive video streams from
AXIS P1347 network cameras and wirelessly transmit the transcoded
video to Samsung Galaxy SII phones running the Jiku Live Player.
Users can view the video streams, select a camera view of choice,
zoom and pan into regions of their interest. The cameras will be
capturing the scene at the conference where the demonstration will
be conducted. Attendees will be able to judge interaction latencies,
encoding delays, practical issues involving computation complex-
ity and limitations of wireless infrastructure.

Acknowledgement
This research is conducted under the NExT Search Center, sup-
ported by the Singapore National Research Foundation and the In-
teractive Digital Media R&D Program Office of Media Develop-
ment Authority under research grant WBS:R-252-300-001-490.

5. REFERENCES
[1] W.-C. Feng, T. Dang, J. Kassebaum, and T. Bauman.

Supporting region-of-interest cropping through constrained
compression. ACM Transactions on Multimedia Computing,

Communications and Applications, 7(3):17:1–17:16, Aug.
2011.

[2] S. Halawa, D. Pang, N.-M. Cheung, and B. Girod. ClassX: an
open source interactive lecture streaming system. In
Proceedings of the 19th ACM International Conference on

Multimedia, pages 719–722, Scottsdale, Arizona, USA, 2011.
[3] M. Inoue, H. Kimata, K. Fukazawa, and N. Matsuura.

Interactive panoramic video streaming system over restricted
bandwidth network. In Proceedings of the 18th ACM

International Conference on Multimedia, pages 1191–1194,
Firenze, Italy, 2010.

[4] N. Q. M. Khiem, R. Guntur, A. Carlier, and W. T. Ooi.
Supporting zoomable video streams with dynamic
region-of-interest cropping. In Proceedings of ACM

Multimedia Systems, pages 259–270, Scottsdale, Arizona,
USA, 2010.

1266




